

Climate Anomalies Reshaping Agricultural Productivity

Name of Author

Instructor Name

Institutional Affiliation

Course Code and Number

Date of Submission

Climate Anomalies Reshaping Agricultural Productivity

The most striking instance of global warming experienced is when parts of Asia, Europe, Africa, and North America went through extreme high-intensity heatwaves between the years 2024-2025 as a result of El Niño events, higher concentrations of greenhouse gases in the air, and continued climate instability due to climate change. As the temperatures went higher than the previous historical parameters, the agricultural systems, which had already proven vulnerable to the currents of weather changes, were very much influenced. Different zones were under heat stress, water scarcity, and inadequate soil. Considering these problems, it can be emphasized that climate deviations are not distant threats but dynamic forces that are transforming food systems. Extreme heat waves of 2024-2025, therefore, among other important factors, affected the agricultural productivity, restructured the crop cycles, influenced the water shortage, and the progressive deterioration of soils in the long term.

Among the most immediate agricultural effects of the 2024-2025 heatwaves were the failures of many crop growth cycles due to the significant temperature rise, surpassing crucial physiological limits of large crop varieties. The onset of heat stress exceeds equilibrium levels, and the rate of respiration decreases as photosynthesis efficiency decreases to lower productivity. In 2024, under the heatwave conditions in regions of South Asia and Southern Europe, temperatures went beyond 45°F, and wheat and maize harvests entered premature senescence, leading to longer filling durations (European Commission, 2024). It has had similar effects in rice-producing areas, where too much heat interfered with flowering and pollination. Such physiological anomalies reduced the growing periods, compromised the structure of plants, and lowered yields even in normally resilient agricultural areas. The frequent heatwaves have also made farmers unable to change the planting schedules because of the sudden influence of

temperature change in the early and late stages of plant growth. Such uncertainty implies that climate anomalies are not seasonal hiccups but a train of threats that undermine the stability of crops. The severe heatwaves led to significant disequilibrium of crop production, thereby reducing agricultural production in many areas.

Moreover, the second severe effect of the 2024-2025 heatwaves was the increased water shortage that complicated the agricultural production and irrigation systems. The extreme temperatures increased the process of evaporation and disrupted rainfall patterns, depriving farmers of water both on the surface and in the ground. In 2024, many regions in the Middle East, Africa, and South Asia faced severely low levels of reservoirs and were slow to meet the monsoons, and offered farmers few irrigation resources (Incoom et al., 2025). Evaporation rates in canals and storage ponds were skyrocketing, and the amount of groundwater in arid zones where it was used in farming activities was dwindling. This was even worse for farmers who relied on the time-honored irrigation techniques, which could not be used as a compensatory measure for the rapid disappearance of water. This reduced the rate at which export farmers could grow the acreage or alter the agricultural systems that had been in use to water-intensive agricultural operations. Consequently, the scarcity of water during the heatwaves aggravated production challenges as it minimized the irrigation resources required to continue growing the stable crops.

Alongside immediate decreases in yield, soil erosion caused by the heatwaves was long-term, and the stress experienced was also a threat to the future production of crops. High temperature increases the loss of soil moisture, promotes salinity, and reduces the organic matter, which is essential in keeping the soil fertile. During the heat wave of 2024-2025, numerous agricultural areas were experiencing reports of hardened soils, decreased activity of

microorganisms, and surging salinity within irrigated areas (Mohanavelu et al, 2021). Higher temperatures also contributed to increases in pest epidemics, including locusts and insects that tolerate heat and flourish in arid environments, and contributed to the destruction of already stressed crops. The degradation of soils does not affect only the present harvests, but it also affects the long-term sustainability of farmlands. Low organic material reduces the ability of soil to hold water by structuring the soil, and high salinity decreases the absorption of nutrients (Israt Jahan Irin & Mirza Hasanuzzaman, 2024). Moreover, the heat and pest invasion caused an unfavorable growing environment and increased the chemical input needed, increasing the costs and environmental dangers of production. These non-independent forces demonstrate the impact of the heatwaves extended significantly beyond the weather variations in the short term. The heat waves consequently enhanced soil erosion and distortions in the ecosystem, which posed long-term threats to farming output.

Conclusively, the 2024-2025 heat waves showed how abnormalities in climate are transforming agricultural systems in different interconnected pathways. For example, plant heat stress was elevated above the sustainable level for most crops, which limited available water for irrigation, causing agricultural practices to change the way they were previously done. Also, soils that had undergone soil erosion lengthy before recent decades contributed significantly to this agricultural production because of the widespread erosion that occurred. All of these changes illustrate the greater vulnerability of the world's food systems to the increasing impacts of climate change. Future solutions include implementing more climate-resilient crop practices, developing and executing better water management practices, creating collaborative solutions across borders, and using agriculture as a means to combat the exponential increase of global

food insecurity and to protect individual and ecosystem health through climate-related ecological catastrophes as a result of the rising frequency of heatwaves.

References

European Commission. (2024, August 26). *Severe impacts of hot conditions in the south*. The Joint Research Centre: EU Science Hub. https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/severe-impacts-hot-conditions-south-2024-08-26_en

Incoom, A. B. M., Adjei, K. A., Odai, S. N., Siabi, E. K., Donkor, P., & Frimpong, K. (2025). Adaptation strategies by smallholder farmers to climate change and variability: The case of the savannah zone of Ghana. *Sustainable Futures*, 9, 100543.
<https://doi.org/10.1016/j.sftr.2025.100543>

Israt Jahan Irin, & Mirza Hasanuzzaman. (2024). Organic Amendments: Enhancing Plant Tolerance to Salinity and Metal Stress for Improved Agricultural Productivity. *Stresses*, 4(1), 185–209. <https://doi.org/10.3390/stresses4010011>

Mohanavelu, A., Naganna, S. R., & Al-Ansari, N. (2021). Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts, and Mitigation Strategies. *Agriculture*, 11(10), 983.
<https://doi.org/10.3390/agriculture11100983>